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Abstract
The thermal conductivities of stoichiometric CaB6, vacancy-doped Ca1−δB6,
and EuB6 have been measured between 6 and 300 K. All our data may be rather
well described across the entire temperature regime covered on the basis of
a Debye-type relaxation-time approximation and by assuming the concurring
influence of various scattering channels on the mean free path of the phonons.
An unusual and strong resonance in the scattering rate of the phonons of all
investigated materials is attributed to a strong interaction between acoustic
itinerant and localized modes, the latter arising from oscillations of the metal
cations around their equilibrium position.

1. Introduction

The search for thermoelectric materials with promising potential for applications is a
fascinating subject, since a compound that is considered for practical applications must
favourably combine several properties that are related to the electronic structure and transport
properties in general. The suitability of a thermoelectric material is quantified by the figure of
merit Z = S2σ/κ , where S is the thermoelectric power, σ the electrical conductivity, and κ

the thermal conductivity. In words, for the benefit of practical applications, the thermoelectric
power should be high for a good conversion of heat to electrical power or vice versa, whereas
the electrical resistivity and the thermal conductivity should both be low in order to minimize
Joule heating and thermal shortening, respectively.

Good metals seem favourable because of their high electrical conductivities, but usually
they exhibit rather low S-values, of the order of a few microvolts per kelvin. In these cases,
the efficient conduction of heat by electrons is also not favourable for keeping the values of Z
at a high level. On the other hand, semimetals or degenerate semiconductors exhibit very high
S-values but their electrical conductivity is poor. A concentration of itinerant charge carriers
of the order of 1019 cm−3 seems to maximize the quantity S2σ [1]. It has recently been found
that materials with conduction electron concentrations of the order of 1018 cm−3 are found in
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the class of hexaborides with divalent cations, such as CaB6, where at room temperature the
thermoelectric power S is of the order of −300 µV K−1 [2].

For practical applications it is not sufficient that a material has favourable electronic
properties: in order to improve the best figure of merit Z , an extraordinarily low thermal
conductivity is also required. With regard to this latter prerequisite, a promising category of
thermoelectric compounds is provided by materials containing open voids in their crystalline
structure, which may be occupied by additional atoms. If the ‘guest’ atoms are small compared
to the size of the void, they will be loosely bound to the rigid cage in which they are embedded,
allowing them to ‘rattle’ around their equilibrium position. The rattling of the guest atoms may
result in very low thermal conduction, in some cases even approaching that of the theoretical
minimum of the lattice thermal conductivity [3]. The term clathrates characterizes a class
of solids in which some guest atoms occupy, fully or partially, the voids of cages of the host
structures. Clathrates seem well suited for thermoelectric applications because of favourable
electronic properties that are associated with this type of material and their drastically reduced
thermal conduction.

The radius of the metal cations in the hexaborides mentioned above is significantly smaller
than the cell parameter [3, 4], and hence these materials may also be classified as clathrate-type
compounds. Here, the role of the guest atoms is played by the metal cations, whereas the host
structure is provided by the sublattice of the boron octahedra. Indeed, a resonant scattering of
the conduction electrons, leading to a substantial reduction of the thermal conductivity of LaB6,
has been ascribed to the rattling of the loosely bound metal cations in their oversized boron
cages [3, 4]. This conclusion is supported by the fact that anomalies in the specific heat data of
LaB6 may successfully be described by treating the La ions as independent Einstein oscillators
with an Einstein temperature �E = 141 K [4]. The scattering rate based on the interaction
between extended Debye-type modes and the localized Einstein-type lattice excitations has
been derived theoretically [5], thus offering the possibility of testing the validity of this model by
a corresponding analysis of experimental results of measurements of the thermal conductivity
of hexaborides. The frequency of the Einstein mode is expected to decrease with increasing
metal cation mass, hence the study of materials with different cations provides an additional
test of the conjecture that hexaborides may be classified as clathrate-like compounds.

In this work, we present the results of measurements of the thermal conductivity κ of
two CaB6 samples. One of the samples was prepared in such a way as to obtain material
with a close to stoichiometric composition, denoted as CaB6. The second sample, which we
denote as Ca1−δB6, is expected to contain a small number of vacancies on the calcium sites,
inadvertently introduced during the flux-growth procedure and leading to a certain degree
of self-doping which is difficult to control. We also extended the data base on the thermal
conductivity of EuB6, previously presented in [6], to higher temperatures.

This paper is organized as follows. We briefly describe the sample preparation and the
experimental set-up in section 2; we then present the results of our measurements and their
analysis in section 3. The final section 4 contains a brief summary and some concluding
remarks.

2. Samples and experimental method

The single crystals were grown from a melt of nominal composition by a slow-cooling
procedure in aluminium flux [7]. The samples for our transport measurements were of
prism-type shape with approximate overall dimensions of 4.2 × 0.5 × 0.45 mm3 for CaB6,
4.7 × 0.45 × 0.4 mm3 for Ca1−δB6, and 1.1 × 0.21 × 0.12 mm3 for EuB6.

We simultaneously measured the thermal conductivity κ and the thermoelectric power S
of all samples by means of a standard steady-state heat-flow technique between liquid-helium
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and room temperature. Details of our experimental set-up are given in [2], together with results
of measurements of the thermoelectric power of the same samples.

In brief, a 4He gas-flow cryostat was used to cool the materials under investigation. By
using high-conductance silver epoxy, good thermal contact to a heat sink made of copper was
ensured at one end of the prism-shaped samples. On the other end of the prisms, a 100 �

ruthenium-oxide chip resistor was attached by using the same glue. Joule heating caused by
heater currents of the order of a few milliamperes provided the necessary heat-flow and hence
a thermal gradient along the crystals. The temperature difference �T between two contacts
mounted perpendicularly to the heat flow was measured by using two pairs of calibrated Au–
Fe (0.07 at.%) versus chromel thermocouples [8]. The advantage of this choice, compared
to the usage of resistance thermometers, is that thermocouples have a much smaller surface,
resulting in a substantial reduction of thermal radiative losses. Very thin (25 µm in diameter)
and long (up to 10 cm) wires have been chosen in order to reduce the heat flow through the
thermocouples.

Thermal-conductivity measurements of materials with low thermal-conductivity values
are generally difficult to perform at high temperatures because of the detrimental effect of
radiative losses on the results. In order to limit this kind of energy dissipation, a cylindrical
radiation shield in good thermal contact with the heat sink was installed. By using similar
arguments to those presented in [8], the radiative losses in our measurements have been
estimated to be below 0.5% of the applied power over the whole temperature range

3. Experimental results and analysis

In figure 1, we display the measured thermal conductivities κmeas of CaB6, Ca1−δB6, and EuB6

on logarithmic scales between 6 and 300 K. In the following analysis we assume that only
conduction-electron and lattice contributions to κmeas need to be considered.

The electronic contributions to the thermal conductivities of CaB6 and Ca1−δB6, shown in
figure 1 as solid curves, were calculated by using the Wiedemann–Franz relation κel = L∗σ T ,
with L∗ for CaB6 and Ca1−δB6 as calculated in [2]. The electrical conductivities σ utilized
for the calculation of the electronic contribution to the thermal conductivity were measured on
the same samples by using a four-point low-frequency technique. The electrical resistivities
ρ = 1/σ of all samples investigated here are presented in figure 2 between 5 and 300 K. For the
benefit of the reader, a plot of the calculated L∗ between 5 and 300 K is presented in figure 3.
For EuB6, L∗ was assumed to be the classical Lorenz number. For all materials, the estimated
κel is at least two orders of magnitude smaller than κmeas at all temperatures covered in this
study. Since the experimental uncertainty in our measurements of the thermal conductance is
of the order of 0.5%, the procedure for estimating κel is not critical and may be considered as
sufficiently accurate for the validity of the following considerations.

The lattice contributions κph = κmeas − κel to the thermal conductivities of all samples
are shown in figure 4, revealing monotonic increases of κph with T up to 18 K for CaB6 and
EuB6, and 23 K for Ca1−δB6, respectively. At these temperatures, κph passes over maxima of
124 and 99 W m−1 K−1 for CaB6 and EuB6, respectively, and 74 W m−1 K−1 for Ca1−δB6,
and subsequently decreases with varying slopes up to room temperature. We note that at low
temperatures κph of Ca1−δB6 adopts distinctly lower values than κph for CaB6. This seems
reasonable because of the expected enhanced scattering of the phonons by defects in the Ca-
deficient material. The crossing of the two curves at a temperature close to 30 K is, however,
rather surprising and implies a much more efficient high-frequency scattering mechanism for
phonons in the structurally more perfect sample.
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Figure 1. The measured thermal conductivities κmeas of CaB6, Ca1−δB6, and EuB6 and their
calculated electronic contributions κel (see text) as a function of temperature on logarithmic scales.

The following quantitative analysis of our data is based on a relaxation-time approximation
combined with the Debye model. The Debye approximation is strictly only valid at
temperatures which are low enough with respect to the Debye temperature �D. In this way
we assume that only the modes of the acoustic branches ω(k) that are well approximated by a
linear k dependence contribute to κph. Since the temperature range covered in our experiment is
considerably lower than the Debye temperatures of �D = 783 K for CaB6 [9] and �D = 570 K
for EuB6 [6], this approximation is justified, at least to some extent. The thermal conductivity
may thus be calculated from

κfit
ph = 3nkB

(
T

�D

)3

v2
ph

∫ �D/T

0

x4ex

(ex − 1)2
τ (x, T ) dx, (1)

where τ (x, T ) is the average time between collisions of a phonon, n is the number density of
atoms in the crystal, and x = h̄ω/kBT . For the Debye temperatures �D, we used the above
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Figure 2. Electrical resistivities of CaB6, Ca1−δB6, and EuB6 as a function of temperature between
5 and 300 K.

Figure 3. Ratio κel/σ T for CaB6 and Ca1−δB6 as a function of temperature between 5 and 300 K,
from [2]. The horizontal dashed–dotted curve represents the temperature independent Lorenz
number L0 = 2.45 × 10−8 V2 K−2.

cited values, which were either extracted from specific-heat measurements on stoichiometric
CaB6 [9] or estimated as described in [6] for EuB6. Since, upon introducing a very small
number of calcium vacancies, no significant changes in the lattice contribution to the specific
heat are expected, we used the same Debye temperature for CaB6 and Ca1−δB6. This argument
is supported by the observation that no significant differences between the low-temperature
specific heats of CaB6 and Ca1−x Lax B6 with x = 0.005 were identified [9]. The number
density of atoms can be calculated from the lattice constants a = 4.146 and 4.185 Å for
CaB6 and EuB6 [10, 11]. From the relation

n = 1/6π2(kB�D/h̄vph)
3, (2)

we may also calculate the average velocity of the vibrational modes for which we obtained
vph = 5722 and 4205 m s−1 for CaB6 and EuB6, respectively.
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1-δ

Figure 4. The lattice contributions to the thermal conductivities κph of CaB6, Ca1−δB6, and EuB6
as a function of temperature on logarithmic scales. The solid curves correspond to fits to the data
as explained in the text.

Table 1. Parameters provided by the fitting of the κph(T )-data to equations (1) and (3).

Fit parameter CaB6 Ca1−δB6 EuB6

lCas (µm) 92.5 ± 0.2 52.5 ± 0.1 42.7 ± 0.3
A (10−44 s3) 6.00 ± 0.02 13.61 ± 0.05 8.4 ± 0.1
B (10−15 s) 7 ± 1 1.5 ± 0.2 3 ± 1
C (10−19 s K−1) 10.6 ± 0.2 1.58 ± 0.05 0.41 ± 0.02
α (109 m−1) 9 ± 2 9 ± 1 14 ± 5
ωs (1013 s−1) 2.876 ± 0.001 2.610 ± 0.005 2.011 ± 0.003
h̄ωs/2kB (K) 109.41 ± 0.04 99.3 ± 0.2 76.5 ± 0.1

For the evaluation of the integral in equation (1), we approximated the phonon relaxation
rate by

τ−1(x, T ) = τ−1
Cas + τ−1

Rayl(x, T ) + τ−1
res (x, T ) + τ−1

U (x, T ). (3)

The different terms on the right-hand side of equation (3) represent the scattering of
phonons at grain or sample boundaries, by point defects, via resonant scattering, and due to
phonon–phonon umklapp processes. The resulting fits are shown in figure 4 as solid curves.
In what follows, we discuss each term appearing in equation (3) separately. The values of the
free parameters involved in our fitting procedure (see below) are given in table 1.

The temperature- and frequency-independent scattering length lCas, related as τ−1
Cas =

vph/ lCas, is the so-called Casimir length, where the phonon mean free path is limited by
sample boundaries [12]. The values between 0.043 and 0.093 mm shown in table 1 are close
to the order of magnitude of the smallest sample dimensions, considering the variation of the
sample cross section perpendicular to the direction of the thermal current.

The enhanced number of scattering centres at the vacancy sites in Ca1−δB6 is unequivocally
reflected in the second term of equation (3). In the continuum approximation, Rayleigh
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scattering by pointlike mass defects leads to a scattering rate term τ−1
Rayl = Aω4, with [13]

A = npa6

4πv3
ph

(
δM

M

)2

. (4)

In equation (4), np is the number density of point defects, a is the lattice constant, M is the
mass of a unit cell, and δM is the excess or missing mass due to a point defect in a sphere with
the radius of the point defect itself. Since the extra mass term appears squared in equation (4),
it is not possible to decide whether δM is positive or negative. The parameter A resulting from
the best fit to the Ca1−δB6 data is approximately twice as large as the corresponding value for
CaB6. The same ratio is reflected in the number of itinerant charge carriers in either Ca1−δB6

or CaB6, as established in [2].
For this reason, we now assume that the mass defects are due to calcium vacancies in both

compounds, leading to a δM/M value of 0.38. Based on this assumption, the fit values of A
listed in table 1 imply point-defect density values np of 1.9 and 4.3 × 1020 cm−3 for CaB6

and Ca1−δB6, corresponding to 170 and 140 times the charge carrier densities in the same
materials [2]. We interpret this result as follows. The vacancies of Ca2+ ions in the lattice are
responsible for the formation of a defect band in the charge-carrier excitation spectrum. A
small number of these charge carriers are transferred to the conduction band and hence become
mobile. It must be kept in mind, however, that equation (4) merely indicates the presence of
mass defects in the lattice and does not contain any information regarding the nature of the
defects. A similar interpretation may be given by assuming the presence of impurities in the
investigated samples, others than those considered in this work.

Resonant scattering of phonons had to be invoked in the analysis of the thermal
conductivity data of EuB6 in a previous report [6]. The resonant scattering of phonons
in EuB6 was intepreted as being due to a resonant scattering of low-momentum itinerant
vibrational states in the low-frequency part of the ω(k) branches with acoustic modes of
constant energy that seem to occupy an extended region of the Brillouin zone at higher
momenta. Indeed, a rapid flattening of the LA branches at an energy of approximately 12 meV
was observed in inelastic neutron scattering experiments performed on hexaborides XB6 with
trivalent cations X = Ce, La, Sm [14–16]. The rapid flattening of the acoustic branches in
LaB6 was later ascribed to the strong interaction between a localized Einstein mode at an
energy of approximately 12 meV, corresponding to an Einstein temperature �E = 140 K, and
the itinerant acoustic phonons [3, 4]. The lanthanum ions are thought to be loosely bound
in a rigid cage made of covalently connected boron octahedra [4]. Since the available space
around the lanthanum atoms is much larger than the size of the atom itself [4], the metallic ion
is allowed to oscillate rather freely around its equilibrium position. By treating the La atoms
as Einstein oscillators embedded in a boron network which can be described as a Debye solid,
the authors of [4]. were also able to reproduce the temperature dependences of the measured
electrical resistivity and specific heat of LaB6.

A calculation of the resonant relaxation time of the lattice vibrations, based on an atomistic
model which describes the inelastic phonon scattering processes in the presence of localized
modes, was given by Wagner [5], following the experimental results presented by Walker and
Pohl [17]. In this approximation, the corresponding phonon relaxation rate is expressed as

τ−1
res = B f (ω, T )g(ω), (5)

with

B = 9

16

π2

ρ

γ 2h̄

vph

(Zα)nres

ωs
, (6)
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f (ω, T ) = (ωs − ω)2eh̄(ωs−ω)/kB T (eh̄ω/kB T − 1)

(eh̄ω/kB T − 1)(eh̄(ωs−ω)/kB T − 1)
, (7)

and

g(ω) =
(

1 + 4
ωα

ωs

)
ln

{
(ω/ωs)(1 − (ω/ωs)) + (ωα/ωs)

ωα/ωs

}
− 4

ω

ωs

(
1 − ω

ωs

)
. (8)

Here ρ is the material’s mass density, γ the lattice Grüneisen constant, Z the number of
localized modes per resonator, α the exponential damping coefficient of the localized mode,
nres the concentration of resonators, ωs the frequency of the stationary modes, and ωα = αvph.
The remaining parameters are the same as defined above. It turns out that the quoted resonant
term suggested by Wagner [5] is the only, physically justified, scattering rate which allows
for a description of all our data sets. Below we briefly discuss the parameters in equation (5)
which were evaluated via the fitting procedure, i.e., Znres, α, and ωs.

Employing equation (6) and inserting the fit values listed in table 1, the number of
localized modes per unit cell Znres, expressed in units of (2/γ )2, is 10 ± 3 for CaB6,
1.9 ± 0.3 for Ca1−δB6, and 3 ± 1 for EuB6. Although not exactly, these values are all of order
unity, indicating that every cubic unit cell in the investigated hexaborides indeed contains one
resonator which we interpret as being the metal cation located at the centre of the cell. With
this intepretation of the data, the crossing of the thermal conductivity curves of the two Ca
based hexaborides at T = 30 K points to a much stronger resonant scattering rate in CaB6. The
best fit value for Znres for CaB6 is approximately a factor of three larger than the one observed
in the other two investigated materials. The physical reason for this unexpected observation
could not be identified in this investigation.

The high values of the damping factor α resulting from our best fits are also listed in
table 1. They indicate that the oscillations die off on short distances. The amplitude of a
metal–cation vibration vanishes within a lattice constant a to less than its eth part, supporting
the quoted assumption that the modes are localized.

The values ωres of the calcium compounds are about 40% higher than the one derived for
the europium-based hexaboride. A higher Einstein frequency for a lighter cation is indeed
expected. In the case of a harmonic potential, for instance, the oscillation frequency is
expected to scale with the inverse of the square root of the cation’s mass, whereas an inverse
mass proportionality of the frequency is encountered for a rectangular quantum well with
impermeable walls. Since we do not know the exact form of the electrostatic potential around
the metal cation of hexaborides, we are not in a position to test whether the encountered
difference in resonant frequency is entirely due to the mass difference between Eu and Ca, or
whether an additional mechanism, e.g., a different coupling strength between the metal cations
and the rest of the lattice, should be taken into account.

The last term in the scattering rate appearing in equation (3) provokes the enhanced
negative slope of κph(T ) above approximately 150 K for CaB6 and EuB6 (see figure 4). For
this term, describing an umklapp type of phonon scattering, we used [18]

τ−1
U = CT ω2 exp

(
−�D

bT

)
. (9)

In order to limit the number of free parameters in our fitting procedure, we fixed the value of
b in equation (9) to b = 2 3

√
7, where 7 is the number of atoms per unit cell. The exponential

decay of κph(T ) dictated by equation (9), usually observed in crystals of high structural quality
in the temperature range [18] 1/30 < T/�D < 1/10, cannot be observed here, because the
scattering of the phonons at these temperatures is dominated by the resonant type of scattering
discussed above.
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Figure 5. The total phonon relaxation rate τ−1 resulting from our fit (see equation (3)) as a function
of frequency for T = 100 K.

As an example, the resulting total scattering rate of the phonons as a function of frequency
is shown in figure 5 for T = 100 K. In this graph, the influence of the resonant type of scattering
on the total scattering rate of the phonons is clearly manifest at frequencies around 2ωs.

In the introductory section, we expressed our interest in the thermal conductivity of
hexaborides by mentioning the feasibility of using clathrates for thermoelectric applications.
Therefore it seems appropriate to briefly discuss the usefulness of the investigated materials
for thermoelectric applications. The dimensionless figure of merit Z T = S2σ T/κ of close
to stoichiometric CaB6, the material with the highest Z T value investigated in this context,
is about 0.02 at room-temperature. This is approximately a factor 50 lower than what is
reached for state-of-the-art thermoelectric materials. A much improved figure of merit may,
nevertheless, be expected for CaB6 at temperatures exceeding 300 K. While the thermoelectric
power S is still increasing with T at room temperature [2], the slopes of the temperature
dependence of the electrical resistivity ∂ρ/∂T [9] and the thermal conductivity ∂κ/∂T are
both negative and, hence, a rapid improvement of Z T with increasing temperature may be
anticipated.

Some general considerations serve to support this optimistic conjecture. In particular, in
view of the Debye temperature �D of CaB6 of 783 K, an enhanced influence of the umklapp
processes will limit κph at temperatures above �D/2 ≈ 400 K [18]. Moreover, the mass-
defect induced scattering of the vibrational modes, as shown in equation (4), can be further
enhanced by isovalent substitutions of the boron atoms. Because of the small weight of the
boron atoms, this should be of great impact, if we consider the term δM/M in equation (4).
The distance between the scattering centres is of the order of 1/n1/3

p ∼ 15 Å. The wavelength
λF = 2π/kF ∼ 100–200 Å of the electrons at the Fermi energy is one order of magnitude
larger than the wavelength 2πvph/ωs ∼ 10–20 Å of the phonons just below the resonance.
Since the electrons have a wavelength longer than the distance between the scattering centres,
they will be less scattered by the enhanced mass fluctuations than the phonons, and hence the
electrical conductivity should not be affected in the same drastic manner.

CaB6 is obviously not a serious rival for other materials in thermoelectric applications
below room temperature. However, based on our understanding of the electrical and thermal
transport properties below 300 K, we expect a significant increase of the Z T values for this
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compound above room temperature. Since all five parameters contributing to Z T (by counting
S twice as it appears squared in Z T ) are developing in a favourable direction above room
temperature, it is quite likely that CaB6 is a competitive thermoelectric material at temperatures
T exceeding 300 K.

4. Summary and conclusion

We have measured the thermal conductivity of close to stoichiometric CaB6, vacancy-doped
CaB6, and EuB6 between 6 and 300 K. A Debye-type relaxation-time approximation is
successful in describing the thermal conductivity data across the entire temperature range
covered in the experiments. We have shown that the usual terms contributing to the total
scattering rate of the vibrational states, i.e. the Casimir- and the Rayleigh-scattering terms,
are consistent with some reasonable expectations. A rather unusual temperature dependence
of κph is observed above approximately 30 K. A resonant type of scattering seems to influence
the mean free path of the phonons at these temperatures. Quite surprisingly, its limiting effect
on the time period between two vibrational-mode collisions is much stronger in the material
with fewer defects. According to theoretical expectations, the resonant scattering is related to
inelastic scattering processes of the phonons in the presence of localized modes. We attribute
the presence of these localized modes to the peculiar structure of hexaborides, which allows
the metal cations located at the centre of an oversized unit cell to move freely around their
equilibrium positions. Finally, we ascribe the enhanced decrease of the thermal conductivity
at higher temperatures to structural or umklapp scattering.
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